Чтобы решить уравнение (\sqrt{x - 5} = 8), нужно избавиться от квадратного корня, возведя обе части уравнения в квадрат. Это даст:
[
(\sqrt{x - 5})^2 = 8^2
]
Упрощая обе стороны, получим:
[
x - 5 = 64
]
Теперь нужно решить полученное линейное уравнение относительно (x). Для этого прибавим 5 к обеим сторонам уравнения:
[
x - 5 + 5 = 64 + 5
]
[
x = 69
]
Таким образом, решение уравнения (\sqrt{x - 5} = 8) — это (x = 69).
Проверим решение, подставив (x = 69) обратно в исходное уравнение:
[
\sqrt{69 - 5} = \sqrt{64} = 8
]
Так как левая часть уравнения равна правой, (x = 69) действительно является решением данного уравнения.