1) Упростите, применив формулы сокращённого умножения:
а) ((m-n^{1/2})^2 + (m+n^{1/2})^2)
Используем формулу (a^2 + b^2 = (a+b)^2 - 2ab), где (a = m - n^{1/2}) и (b = m + n^{1/2}).
[
(m-n^{1/2})^2 + (m+n^{1/2})^2 = [(m-n^{1/2}) + (m+n^{1/2})]^2 - 2(m-n^{1/2})(m+n^{1/2})
]
[
= (2m)^2 - 2(m^2 - (n^{1/2})^2) = 4m^2 - 2m^2 + 2n = 2m^2 + 2n
]
б) ((m^{1/3}+2n^{1/2})^2 - (m^{1/3}-2n^{1/2})^2)
Используем формулу разности квадратов (a^2 - b^2 = (a+b)(a-b)), где (a = m^{1/3}+2n^{1/2}) и (b = m^{1/3}-2n^{1/2}).
[
(m^{1/3}+2n^{1/2})^2 - (m^{1/3}-2n^{1/2})^2 = [(m^{1/3}+2n^{1/2}) + (m^{1/3}-2n^{1/2})][(m^{1/3}+2n^{1/2}) - (m^{1/3}-2n^{1/2})]
]
[
= (2m^{1/3})(4n^{1/2}) = 8m^{1/3}n^{1/2}
]
в) ((m^{1/4}-n^{1/2})(m^{1/4}+n^{1/2}))
Это стандартная формула разности квадратов (a^2 - b^2), где (a = m^{1/4}) и (b = n^{1/2}).
[
(m^{1/4}-n^{1/2})(m^{1/4}+n^{1/2}) = (m^{1/4})^2 - (n^{1/2})^2 = m^{1/2} - n
]
г) ((m^{1/2}+n)(m-m^{1/2} \cdot n+n^2))
Раскроем скобки и упростим:
[
(m^{1/2}+n)(m-m^{1/2} \cdot n+n^2) = m^{1/2} \cdot m + m^{1/2} \cdot (-m^{1/2} \cdot n) + m^{1/2} \cdot n^2 + n \cdot m - n \cdot m^{1/2} \cdot n + n \cdot n^2
]
[
= m^{3/2} - m + m^{1/2}n^2 + nm - n^2 + n^3
]
2) Вычислите:
а) ((7^{1/2}-3^{1/2})^2 + (7^{1/2}+3^{1/2})^2) используя решение из п.1а:
[
(7^{1/2}-3^{1/2})^2 + (7^{1/2}+3^{1/2})^2 = 2 \cdot 7 + 2 \cdot 3 = 14 + 6 = 20
]
б) (((3^{1/4} +27^{1/4})^2 -12) * ((3^{1/4} -27^{1/4})^2 +12))
Для упрощения, обозначим (a = 3^{1/4}), (b = 27^{1/4} = 3^{3/4}), тогда:
[
((a + b)^2 -12) ((a - b)^2 +12) = (a^2 + 2ab + b^2 - 12) (a^2 - 2ab + b^2 +12)
]
[
= (3 + 2\cdot3 + 9 - 12) (3 - 2\cdot3 + 9 + 12) = (12) (21) = 252
]
3) Сократите дробь:
а) ((x-y) / (x^{1/2} - y^{1/2}))
Обозначим (a = x^{1/2}) и (b = y^{1/2}), тогда:
[
\frac{x-y}{x^{1/2} - y^{1/2}} = \frac{a^2 - b^2}{a - b} = \frac{(a-b)(a+b)}{a - b} = a + b = x^{1/2} + y^{1/2}
]
б) ((x^{3/2}+y^{3/2}) / (x-x^{1/2} \cdot y^{1/2} +y))
Обозначим (a = x^{1/2}) и (b = y^{1/2}), тогда:
[
\frac{x^{3/2}+y^{3/2}}{x - x^{1/2} \cdot y^{1/2} + y} = \frac{a^3 + b^3}{a^2 - ab + b^2}
]
[
= \frac{(a+b)(a^2 - ab + b^2)}{a^2 - ab + b^2} = a + b = x^{1/2} + y^{1/2}
]